«

»

Print this Post

Tulangan Geser Pada Balok

Gaya geser umumnya tidak bekerja sendiri, tetapi terjadi bersamaan dengan gaya lentur/momen, torsi atau normal/aksial. Dari percobaan yang telah dilakukan diketahui bahwa keruntuhan akibat gaya geser bersifat brittle/getas atau tidak bersifat daktail/liat, sehingga keruntuhannya terjadi secara tiba-tiba. Hal ini karena kekuatan menahan geser lebih banyak dari kuat tarik dan tekan beton dibandingkan oleh tulangan gesernya. Pada struktur beton yang menahan momen maka keruntuhannya bisa diatur apakah akan bersifat daktail atau tidak, tergantung pada jumlah tulangan yang dipakai.

Besar gaya geser pada balok atau kolom, umumnya bervariasi sepanjang bentang, sehingga banyaknya tulangan geser pun bervariasi sepanjang bentang.

Ada beberapa sebab retak pada struktur beton, yaitu
  • Retak akibat lentur/momen
  • Retak akibat geser
Retak-retak ini bila tidak ditahan dengan tulangan akan mengakibatkan keruntuhan, mengingat sifat beton yang tidak mampu menahan gaya tarik.
Retak akibat lentur ditahan dengan tulangan lentur atau tulangan longitudinal atau memanjang karena letak retak yang terletak vertikal ke atas. Sedangkan retak akibat geser ditahan oleh tulangan geser.

PERENCANAAN TULANGAN GESER MENURUT SNI

Tulangan untuk menahan gaya geser biasa dinamakan tulangan geser atau tulangan sengkang atau tulangan stirrup. Tulangan geser diperlukan untuk menahan gaya tarik arah tegak lurus dari retak yang diakibatkan oleh gaya geser. Ada berbagai macam cara untuk pemasangan tulangan geser yaitu :
  • Tulangan geser vertikal
  • Tulangan geser miring / diagonal
  • Tulangan geser spiral
  • Tulangan lentur yang dibengkokkan
Retak geser terletak secara diagonal pada badan balok sehingga perletakan tulangan geser yang paling efektif adalah tulangan geser miring / diagonal tegak lurus arah retak, sehingga tulangan hanya menahan gaya tarik saja dari gaya retak tersebut, tetapi tentunya dengan cara ini akan memakan biaya yang besar dan pemasangan yang lebih sulit.

Demikian juga dengan tulangan geser spiral meskipun efektif dalam menahan gaya geser tapi sulit pemasangan pemasangannya dan sekaligus lebih mahal.

Dalam hal ini yang paling disukai dan paling banyak dipakai dalam perencanaan struktur adalah tulangan geser vertikal.

Gambar susunan tulangan geser dan lentur

Gambar susunan tulangan geser dan lentur

Pada perencanan tulangan geser dengan desain ultimit bahan maka gaya geser yang terjadi akan ditahan oleh dua bahan/material yaitu beton dan baja dengan cara dihitung dulu kekuatan atau kapasitas beton dalam menahan gaya geser yang terjadi kemudian sisanya akan dilimpahkan ke baja.

PROSEDUR PERHITUNGAN TULANGAN GESER

1. Gaya geser/shear/transversal pada struktur beton

Menghitung gaya geser terfaktor Vu pada sepanjang bentang. Besar Vu adalah sebagai berikut (bila tidak ada beban gempa):

Vu = 1,2 VD + 1,6 VL

Keterangan :

VD = gaya geser akibat beban mati
VL = gaya geser akibat beban hidup

Dengan diagram gaya geser tersebut dibagi beberapa segmen/bagian sehingga tulangan geser yang dipakai dapat lebih efektif.
Dari tumpuan ke jarak d dari diagram geser di atas dapat diabaikan karena sejauh d dari tumpuan gaya geser yang terjadi tidak efektif mengakibatkan kerusakan pada struktur (khususnya balok).

2. Menghitung kekuatan beton menahan geser Vc

Harga Vc berdasar jenis struktur, yaitu sebagai berikut :

a. Untuk kombinasi gaya geser dan lentur (contoh: balok)

Keterangan :

Vc  = kemampuan beton menahan geser (N)

f’c  = kuat tekan beton (MPa)

ρw  = rasio tulangan pada web = As/bwd

Vu  = beban geser terfaktor (N)

Mu  = beban momen terfaktor (Nmm)

bw  = lebar balok (mm)

d  = tinggi balok efektif (mm)

Mengingat harga-harga Vu, Mu dan ρw bervariasi sepanjang bentang sehingga akan menyulitkan untuk menghitungnya, maka persamaan di atas disederhanakan dengan persamaan sebagai berikut :

b. Untuk kombinasi geser dan aksial tekan/normal (contoh : kolom)
dengan :
Atau dengan persamaan :

dengan :

Nu = beban aksial terfaktor (N)

Ag = luas bruto penampang (mm²)

kedua persamaan di atas tidak perlu lebih besar dari

jadi dipilih yang terkecil di antara persamaan di atas

c. Untuk kombinasi geser dan aksial tarik (contoh : kolom tarik)

Dalam perencanaan/desain ultimit maka kekuatan beton dalam menahan gaya geser ini harus dikalikan dengan faktor reduksi sebesar 0,75.

3. Memeriksa syarat penampang struktur dengan ketentuan sebagai berikut :

  • Bila Vu<0,5 Φ Vc → tidak memerlukan sengkang
  • Bila 0,5 Φ Vc<Vu< Φ Vc → gunakan tulangan minimum
  • Bila (Vu – Φ Vc)<0,67bwd → hitung Vs
  • Bila (Vu – Φ Vc)>0,67bwd → ukuran penampang diperbesar
4. Menghitung sisa gaya geser dari gaya geser kapasitas beton yang harus ditahan oleh tulangan geser Vs.

Vu ≤ Φ Vn

Vn = Vc+Vs

Vu ≤ Φ Vc+ΦVs

maka Vs = (Vu / Φ) – Vc

5. Menghitung tulangan geser yang diperlukan

Tentukan luas tulangan geser Av dengan luas tulangan yang biasa dipakai di lapangan mis: Φ 6, Φ 8, D10 atau D16.

Keterangan

Φ = untuk tulangan polos

D = untuk tulangan deformed

Menghitung jarak/spasi tulangan geser s

Keterangan :

fy = tegangan leleh baja tulangan geser (MPa)

6. Bila pada langkah ke 3 menghasilkan 0,5 Φ Vc<Vu< ΦVc maka dapat digunakan tulangan minimum dengan persamaan sebagai berikut :

Permanent link to this article: http://www.ilmutekniksipil.com/struktur-beton/tulangan-geser-pada-balok

Forum Teknik Sipil dan Arsitektur

3 comments

  1. Zwa

    “Dari tumpuan ke jarak d dari diagram geser di atas dapat diabaikan karena sejauh d dari tumpuan gaya geser yang terjadi tidak efektif mengakibatkan kerusakan pada struktur (khususnya balok).”

    mengapa tidak efektif?

  2. Arie

    Thank you gan informasi nya, numpang copas ya

    1. Admin

      boleh silahkan saja mas. jangan lupa cantumkan sumber nya :)

Leave a Reply

Your email address will not be published. Required fields are marked *

* Copy This Password *

* Type Or Paste Password Here *

6,695 Spam Comments Blocked so far by Spam Free Wordpress

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>